Minimization of λ2(Ω) with a perimeter constraint

نویسندگان

  • Dorin Bucur
  • Giuseppe Buttazzo
  • Antoine Henrot
چکیده

We study the problem of minimizing the second Dirichlet eigenvalue for the Laplacian operator among sets of given perimeter. In two dimensions, we prove that the optimum exists, is convex, regular, and its boundary contains exactly two points where the curvature vanishes. In N dimensions, we prove a more general existence theorem for a class of functionals which is decreasing with respect to set inclusion and γ lower semicontinuous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On convex sets that minimize the average distance

In this paper we study the compact and convex sets K ⊆ Ω ⊆ R that minimize ∫ Ω dist(x,K) dx + λ1V ol(K) + λ2Per(K) for some constants λ1 and λ2, that could eventually be zero. We compute in particular the second order derivative of the functional and use it to exclude smooth points of positive curvature for the problem with volume constraint. The problem with perimeter constraint behaves differ...

متن کامل

The minimal gap between Λ2(Ω) and Λ∞(Ω) in a class of convex domains

We consider the minimization problem min Ω∈X (Λ2 − Λ∞) (Ω), where Λ2(Ω) and Λ∞(Ω) are the (square root of the) first eigenvalue of the Laplacian and the first eigenvalue of the ∞−Laplacian respectively. X is the class of convex domains with prescribed diameter. We prove existence of a solution, and we provide several geometrical properties of minimizers.

متن کامل

Regularity of Minimizers of Quasi Perimeters with a Volume Constraint

In this article, we study the regularity of the boundary of sets minimizing a quasi perimeter T (E) = P (E,Ω) + G (E) with a volume constraint. Here Ω is any open subset of Rn with n ≥ 2, G is a lower semicontinuous function on sets of finite perimeter satisfying a condition that G (E) ≤ G (F ) + C |E∆F | among all sets of finite perimeter with equal volume. We show that under the condition β >...

متن کامل

Minimization of eigenvalues by free boundary - free discontinuity methods

a) Under the hypotheses above, problems (P1) and (P2) have at least one solution Ω, which is a bounded set. b) If F is moreover locally Lipschitz, then every solution Ω of (P2) is a bounded set with finite perimeter. c) If in addition F is locally bi-Lipschitz in at least one variable, then every solution Ω of (P1) is a bounded set with finite perimeter. The existence result for (P1) and (P2) u...

متن کامل

Analyticity for a Two Dimensional Free Boundary Problem with Volume Constraint

Let Ω be a bounded domain in Rn, n ≥ 2. We use MΩ to denote the collection of all pairs of (A, u) such that A ⊂ Ω is a set of finite perimeter and u ∈ H1 (Ω) satisfies u (x) = 0 a.e. x ∈ A. We consider the energy functional

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009